Many-body localization in the avalanche model (aka Quantum Sun Model)

Wojciech De Roeck, Amirali Hannani

Leuven University, Belgium

IRS, Paris, January 2025

Avalanche model (aka "Quantum Sun Model")

$$H = H_R + \sum_{i=1}^n \left(h_i Z_i + \alpha^i (X_R \otimes X_i) \right)$$

- 1. Finite GOE matrix H_R models bath R.
- 2. $X_R \otimes X_i$ couples bath R to spin i.
- 3. Parameter: $0 \le \alpha < 1$.
- 4. $\alpha = 0$: spins not coupled to R: eigenvectors of $H \approx$ eigenvectors of $Z_{i=1,2,...}$ \Rightarrow many-body localization.

Avalanche model (aka "Quantum Sun Model")

$$H = H_R + \sum_{i=1}^n \left(h_i Z_i + \alpha^i (X_R \otimes X_i) \right)$$

- 1. Finite GOE matrix H_R models bath R.
- 2. $X_R \otimes X_i$ couples bath R to spin i.
- 3. Parameter: $0 \le \alpha < 1$.
- 4. $\alpha = 0$: spins not coupled to R: eigenvectors of $H \approx$ eigenvectors of $Z_{i=1,2,...}$ \Rightarrow many-body localization.
- 1. R is the only source of non-integrability/interaction/deloc.
- 2. In equilibrium statuech at positive temperature, there can be no effect of R at large distance, but loc/deloc is a dynamical phase transition.

Avalanche model: Phenomenology

Consistent theory + good numerical evidence (DR, Huveneers, Luitz 2017, ...) 1. For $\alpha < \frac{1}{\sqrt{2}}$: localization: eigenvectors \approx eigenvectors of $(Z_i)_{i>O(1)}$. 2. For $\alpha > \frac{1}{\sqrt{2}}$: full ergodicity (thermalization, but slow dynamics).

Avalanche model: Mathematics

Localization for $\alpha \ll \frac{1}{\sqrt{2}}$ (DR, Hannani (in preparation))

- 1. Eigenvectors close to eigenvectors of $(Z_i)_{i>O(1)}$: straightforward argument!
- 2. Poisson spectral statistics: we need also randomness g_i in interactions.

$$H = H_R + \sum_{i=1}^n \left(h_i Z_i + \alpha^i g_i (X_R \otimes X_i) \right), \qquad g_i \text{ i.i.d. RV's}$$

Localization is very intuitive in this model, but technically it is still many-body:

Hilbert space dimension $\sim (\sqrt{2})^{\rm number \ of \ independent \ RV's}$